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Abstract— Using a semi-analytical finite element (FE) method, the torsional phase velocity spectra
of elastic waves were investigated for reinforced concrete (RC) columns with and without exterior
composite layers. An examination of the spectra of these two types of columns shows that the
retrofitted columns have a slightly smaller phase velocity in their first mode. In addition, the first
mode shapes exhibit marked warping induced by the vertical bars.

Comparisons of the exact phase velocity of the first mode with those calculated from elementary
theories indicate that the elementary theories give a poor prediction of the torsional wave speed
even at the long wavelength !imit. This inaccuracy, which comes from not including the effect of
warping, can be overcome by computing the torsional rigidity utilizing Saint-Venant’s semi-inverse
method for torsional warping. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The subject of torsional wave propagation in heterogeneous beams, such as reinforced
concrete (RC) columns, has not been addressed prior to this work due to the complexity
induced by the heterogeneity. The objectives of the present paper are: (i) to compute the
torsional phase velocity spectra of columns with and without exterior composite layers
(these layers have a softer shear modulus than concrete) and (ii) to examine the accuracy
of elementary torsion theory in simulating torsional wave propagation.

Wave propagation in an isotropic cylinder with a uniform circular cross section was
investigated by Chree (1889), Bancroft (1941), Owen (1950), and Davies (1956). The phase
velocity of the first torsional mode was found to be independent of wavelength, i.c.,
nondispersive. For uniform beams with rectangular cross section, Barr (1962) reported that
all modes were dispersive. According to Barr’s experiments, torsional phase velocity of the
first mode increased as wave number increased (and wavelength reduced).

Torsional wave propagation in composite circular cylinders having isotropic con-
stituents was investigated by Armenakas (1965), Reuter (1969), Haines and Lee (1971),
and Kaul er al. (1981).

Semi-analytical finite element methods were employed for wave-guide problems by
Nelson ef al. (1971), and Rattanawangcharoen et al. (1992) to investigate wave propagation
in laminated-composite circular cylinders whose radial region was discretized into one-
dimensional, two-node elements.

In this paper, torsional wave analyses were presented for RC columns with uniform
cross section. Due to the extremely low volume fractions of spirals or tie bars, transverse
reinforcement was neglected in the present investigation. It was found that the first torsional
mode is nondispersive for circular, octagonal, and square cross sections irrespective of
retrofitting ( for the thickness of the carbon/epoxy layer considered). The elementary torsion
theory fails to predict the torsional wave speed at the long wavelength limit. This inaccuracy
stems from not including the effect of warping observed in the first torsional mode shapes
(there is warping even in columns with circular cross section). In order to accurately predict
the torsional wave speed by utilizing the elementary torsion theory, it is necessary to
perform Saint-Venant’s semi-inverse analysis for torsional rigidity. A finite element method
was utilized to solve the boundary value problems for warping functions defined on cross
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sections (Herrmann, 1965). The torsional rigidity was also compared with the analytical
and experimental results reported by Kuo and Conway (1973).

FOERMULATION OF TORSIONAL WAVEGUIDE PROBLEM

Torsional wave propagation in infinitely long RC columns with uniform cross sections
is considered. Cross sections of the RC columns with exterior composite layers are shown
in Fig. 1. Let the x;-axis be in the direction of the column axis, and the x,, x,-plane be the
plane of the cross section. The x;, x,, and x; axes form a rectangular Cartesian coordinate
system. Cross section € consists of non-overlapping sub-regions of concrete, Q) the
exterior composite layer, Q®, and the longitudinal steel bars, Q) (m = 1,2,..., N, where
N denotes the number of longitudinal bars) :

N

0O =00 ,yo® UQ(3), QW = U QL
m=1 'm
QNP =g, QPN QY =g, QPO = ifm#n, 1)

where ¢ denotes a null set, and the composite region exists only for retrofitted columns.
For notational simplicity, the superscript (x) denotes variables associated with material
o = 1 (steel), 2 (concrete), and 3 (composite). The boundary of each sub-region is denoted
by 6Q® whose unit outward normal is 1.

In what follows, Cartesian indicial notation is employed with the summation con-
vention used for repeated indices. It is noted that due to the heterogeneity induced by steel
bars, all displacement components are excited by torsional wave motion. Let #; denote the
displacement vector field, and &, and &, be the symmetric strain and stress tensor fields,
respectively. The over-barred quantities denote the values in the time domain. For harmonic

(©) (d)

Fig. 1. Retrofitted RC columns with (a) circular, (b) octagonal, (¢) square, and (d) rectangular
cross sections of equal area.
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motion with angular frequency w, the displacement vector, strain tensor, and stress tensor
fields take the form:

(@ & &6,;](x,x2, x5, =[y g 0,](x), X3, X5, ) exp(—./ — lwt), 2
where ¢ denotes time, and u, ¢, and ¢;; are complex amplitudes of displacements, strains,
and stresses, respectively. The physical components of those variables are the real or
imaginary part of the above quantities. For notational clarity, ./(—1) is used, instead of i,

to avoid any confusion with the i (=1, 2, 3) used for indicial notation.
The harmonic equations of motion become

o+ pPwtu® =0 InQ", &)

where (),; = 6()/0x;, and p is mass density.
Hooke’s law is described as

o = CH e inQ®, (4a)
where C,,, is the elastic modulus tensor.

For isotropic material 1 (steel) and material 2 (concrete) the elastic modulus tensor
can be written in terms of shear modulus G and Poisson’s ratio v as:

@
o) =2G™ {ﬁ——v siﬁéi,+8§?)} inQ®, a=1 and 2 (4b)
(1—2v®)

where ¢, is the Kronecker delta (6, =1 if i = j, 6, = 0 if i # j). The exterior composite
layer is characterized as a cylindrically orthotropic material which becomes monoclinic

with respect to the x-coordinate system (Lekhnitskii, 1963).
The strain—displacement relations are

e = (U +u)  inQ®. (3

The interfacial boundary conditions consist of the continuity of displacements and tractions
on each interface between the steel bar and concrete, 0Q% :

uV =u?, P =oPnl” ondQy, m=0,1,...,N. (6a,b)

For the columns with composite layers, the continuity conditions are prescribed on the
interface between the concrete and composite layer, 9Q¢ :

W = U, PP = oPn® ondQP ifQY # & (7a,b)
The traction free condition on the exterior composite surface 6Q§" becomes:
ciPn® =0 ondQy ifQY # . (7¢)
For unretrofitted columns, the traction free condition holds on the boundary éQ§ :
cPn? =0 ondQfP IfQY =g (8)
In what follows, harmonic wave propagation with wave number & in the x,-direction

is considered. The wave number is related to the wavelength A as k = 2n/A. The dis-
placement and stress fields are expressed in the form:
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U (X1, X5, X5, 0) = @7 (%1, X2, k, w) exp(y/ — 1kx3), (%a)

017 (X1, X2, X3, 0) = (X}, X, k, w) exp(y/ — lkx3). (9b)

For a given wave number k, the above problem (3)—(9), defines an eigenvalue problem for
angular frequencies (eigenvalues) and corresponding mode shapes. Phase velocity C, and
group velocity C, are obtained from & and w as (Fung 1965, Chap. 11):

w
=2 Co=gp (10a,b)

The above strong formulation of the problem can be cast in a variational form by
utilizing Hamilton’s principle (Nelson et al., 1971):

3 1
5 { ) Hi(p%zu@uw* — Cpefy e dx, dxz} =0, an
a=1

. Q)

where d() implies the variation of (), and ()* indicates the complex conjugate of ().
The above equation yields

k)

d {Z jj(—ée}j—“*a?j—" + U * p P w?u® +c.c.) dx, dxz} =0, (12)
o=:1
Q(al

where “c.c.” denotes the complex conjugate of the preceding terms.

Admissible displacements in each sub-region are continuous up to the second spatial
derivatives and satisfy (6a) and (7a). Since Hamilton’s principle is a displacement-based
variational formulation, eqns (4) and (5) become definitions or constraints. For admissible
displacement fields, the Euler-Lagrange equations of (11) yield the equations of motion,
(3), the traction continuity, (6b), (7b), and the traction free condition on the exterior
boundary, (7c) or (8).

In this paper, cross sections with double axes of symmetry are considered (see Fig. 1).
For torsional wave motion, the anti-symmetry condition is described on both the x,- and
X,-axes as:

01y = Uy = Uz = 0 onx, = 0, (13a,b,C)
Uy =0, =u; =0 onx,=0. (14a,b,c)

By taking advantage of the above conditions, only one quadrant of cross section £ needs
to be analyzed. In this case, admissible displacements in each sub-region must satisfy (13b,c)
and (14a,¢) in addition to (6a) and (7a).

SEMI-ANALYTICAL FINITE ELEMENT ANALYSES

By taking advantage of the antisymmetry conditions (13) and (14), only one quadrant
of cross section Q needs to be discretized into four-node quadrilateral elements. The
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Fig. 2. A representative finite element mesh.

representative mesh used for numerical analyses is shown in Fig. 2. Each node has three
translational degrees-of-freedom in complex form. Non-overlapping finite-clement regions
are denoted by I'® e =1,2,... N,:

Nel
Q= JT€, TONTV =g ifef, (15)

where N, is the total number of elements.
In a typical isoparametric element, I', the displacement field is approximated by
nodal displacements (Hughes, 1987) :

(u}© = [N]O{O}@ exp(y/— lkx;) inT, (16a)

where {u} is the 3 x | displacement matrix :
W} = [ ug ugV (16b)
[N] is the 3 x 12 interpolation matrix, and {U} represents the complex 12 x 1 nodal dis-
placement matrix. These matrices are defined in Appendix A. In (16b), the superscript “7T7

represents the transpose.
The strain—displacement relation (5) together with (16) becomes in matrix form:

(6} = (B {0} exp(y/— lkx;) in[®, (172)

where {&} is the 6 x 1 strain matrix:
(9= 68 60 28 26 20, (17b)

and [B] is the complex 6 x 12 strain—displacement matrix, defined in Appendix A.
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Hooke’s law (4) is rewritten in matrix form as:

{0} =[D]{e}'” inI', (18a)

where {o} is the 6 x | stress matrix,
(0} = [0 o} o8 oft ol (18b)

and [D] is the 6 x 6 elastic modulus matrix, defined in Appendix A. The matrix [D] is
constructed by utilizing the appropriate elastic moduli of material « (=1, 2, 3).
The substitution of (16)~(18) into (12) yields

N,

el

> Jj(—— 0{e*} N0} + w8 {u*} T p {u} ) dx, dx, +c.c.

e=

e

Ncl
= Z 5{(]*}@)7[_[K](e){ﬁ}(m+wz[M]te){U}(e)]+C.c_ =0, (19)
e=1
where [K]*“ is the element stiffness matrix, which is a 12 x 12 Hermitian matrix,

[K]© = JJ[B*](c)T[D](e)[B](e) dx, dx,, (20a)

r

and [M]“ is the element mass matrix, which is a 12 x 12 real symmetric matrix,

[M]© = -[-[[]V](C)Tp(z')[]\/](t') dx, dx,. (20b)

r‘e)

In the above derivation, the complex conjugates of the variations of (16a) and (17a):

S{u*}OT = 5O} OT[N]OT exp(—+/ — 1kxs), (21a)
5{e*}OT = §{U*}OT[B“7T exp(—+/ — 1kx3), (21b)

have been utilized.
After assembling both element stiffness and mass matrices for the global degrees-of-
freedom, the Euler—Lagrange equations of (19) render an algebraic eigenvalue problem,

KU} = 0*[M}{T}, (22)

where the global stiffness matrix [K] is Hermitian, [K]*" = [K], and the global mass matrix
[M] is real and symmetric, [M]” = [M]. It is known that Hermitian matrices have real
eigenvalues (Noble and Daniel, 1977).

In the numerical analyses, it is convenient to nondimensionalize elastic moduli and
mass density by those of concrete. Spatial variables and displacements are non-
dimensionalized by a reference length, o, of the cross section. With this nondi-
mensionalization, wave number, kd = 2nd/A, is prescribed and the eigenvalue problem
(22), is solved numerically for eigenpairs starting from the lowest modes,
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—, 51U}z s =1,2,... 23
(Ehgton) =, @3)

where C, = /(G /p?) is the concrete shear wave velocity in a full space.

The above cigenvalue analyses were conducted using an HP workstation. The global
stiffness matrix was stored in skyline format and a lumped mass matrix was employed. The
lumped mass matrix was constructed based upon the row-sum algorithm (Hughes, 1987,
Chap. 7). The first 15 modes were computed using the inverse iteration method with the
shifting to higher modes (Hughes, 1987, Chap. 10). To this end, the existing tri-
angularization algorithm for the skyline storage scheme of symmetric matrices was gen-
eralized for Hermitian matrices. The code was validated by computing phase velocity
spectra for homogeneous beams with uniform circular cross-section and comparing the
phase velocity for the (nondispersive) lowest mode with the exact value predicted by Chree
(1889).

NUMERICAL RESULTS

Dispersion spectra and corresponding mode shapes were computed numerically for
the RC columns shown in Fig. 1. The columns considered have : (a) circular, (b) octagonal,
(c) square, and (d) rectangular (with aspect ratio 3:2) cross sections of equal area and are
with or without exterior composite layers to model the columns with or without composite
retrofitting. The diameter of the circular cross section is 500 mm. Each column is vertically
reinforced by twelve steel bars of diameter 25 mm. The circular and octagonal cross sections
had their bars arranged periodically every 30° on the circle of radius 192.5 mm. For the
columns with the square and rectangular cross sections, vertical rebars were arranged four
per face, as shown in Figs 1(c) and 1(d), and these columns have the same core concrete
area as the column with circular cross section. Material properties employed for the
calculations are shown in Table 1.

The columns considered have been retrofitted with a unidirectional carbon/epoxy
composite layer of thickness 12.5 mm with the fiber in the circumferential direction. The
material properties of the carbon/epoxy layer are shown in Table 2. Even though the effect
of retrofitting was only investigated for the unidirectional composite layer of thickness 12.5
mm, the present formulation can be applied to any anisotropic material layer described by
(4a) as long as the perfect bond condition between the column and the reinforcing layer,
(7), is satisfied.

In order to describe different modes, it is convenient to employ the circumferential
mode number, #, of a homogeneous cylinder with a circular cross section, whose dis-
placements are expressed in cylindrical coordinates, » and 6, as (Gazis, 1959) :

Table 1. Material properties of steel and concrete

Steel (1) Concrete (2)
E 210 GPa 21 GPa
G 80.8 GPa 9.1 GPa
v 0.3 0.15
p 7800 kg/m® 2300 kg/m’®

Table 2. Material properties of the carbon/epoxy layer

Ey Er Gir VL1 Vrr 14

148 GPa 9.65 GPa 4.55 GPa 0.3 0.3 1500 kg/m’
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u,(r,0,x3) = U,(r)sinnBexp(/ — 1kx;)
ug(r, 0,x3) = Uy(r) cosnf exp(\/F—lkx})

u.(r,0,x5) = U.(r) sinnBexp(/ — 1kx,), (24)

where 7 is an integer. In addition to the torsional modes which are defined by n = 0 in (24),
the antisymmetric conditions on the x;—x, and x,-x; planes, (13) and (14), also induce the
circumferential modes of even numbers n = 2,4, 6, .... Within each circumferential mode
group identified by #, there are an infinite number of modes which are referred to as the
first, second, third, ... modes. In the following, modes of RC columns are distinguished,
except for rectangular cross section, by using the circumferential mode number, #, of a
homogeneous column with a circular cross section.

The dispersion spectra and corresponding mode shapes will be first shown for the
columns before retrofitting. A dispersion relation of nondimensional frequency, (23), and
phase velocity, (10a), will be shown as functions of d/A(=kd/2n) where d is the diameter
of the column and A is the wavelength. The phase velocity will be nondimensionalized by
the shear wave velocity of concrete. Also, the effect of retrofitting on dispersion relations
will be shown. Comparisons of phase velocity spectra and the corresponding first torsional
mode shape will be made between the columns before and after the composite retrofitting.

For the column with circular cross section and no retrofitting, Fig. 3(a) shows dis-
persion relations of nondimensional frequency as a function of d/A for the torsional modes
n = 0 as well as the non-axisymmetric modes # = 2. The dispersion relation is replotted in
Fig. 3(b) in terms of phase velocity as a function of d/A. Figure 3(c)—(e) show the phase
velocity spectra for the columns with the octagonal, square, and rectangular cross sections,
respectively. For comparison, the phase velocity spectra for the circular column in Fig. 3(b)
are also shown by dashed lines in Fig. 3(¢)—(e). The first torsional mode in each column is
nondispersive, i.e., the phase velocity is independent of d/A as predicted by elementary
torsion theory (summarized in Appendix B). In Fig. 3(d) and (e) the phase velocity of the
first torsional modes for the square and rectangular columns are about 8 and 15% smaller
than that of the circular column due to the smaller torsional rigidity, while the phase
velocity of the first torsional mode for the octagonal column is approximately 1% less than
that of the circular column.

(@) 10.0
8.0

6.0

wd/Cs

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

d/ A

Fig. 3(a). Dispersion relations : nondimensional frequency vs d/A for the column with the circular
cross section.
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Fig. 3(b). Phase veiocity vs d/A for the column with the circular cross section.
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Fig. 3(c). Phase velccity vs d/A for the column with the octagonal cross section.

The predictions of the elementary theory of torsion, (B10) in Appendix B, are shown
in Fig. 3(b)—(e) by dash—dotted lines. The elementary theory does not predict the torsional
wave velocity accurately even for the columns with circular cross section.

Figure 4(a)—(d) show the first torsional mode shapes (n = 0, at d/A = 0.637) for the
columns with circular, octagonal, square, and rectangular cross sections, respectively. It is
known that a plane normal to the axis of a beam with a homogeneous circular cross section
remains plane, i.e., no warping (Timoshenko and Goodier, 1951, 1970). Figure 4(a) shows
that warping is generated, even for the column with circular cross section, by the het-
erogeneity induced by the reinforcing bars. The octagonal cross section in Fig. 4(b) warps
in a manner similar to the circular cross section in Fig. 4(a). Considerable warping is
observed for both the square and rectangular cross sections in Fig. 4(c) and (d), respectively.
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Fig. 3(d). Phase velocity vs d/A for the column with the square cross section.

) 1.8

Cp/Cs
o

0.6

d/A
Fig. 3(e). Phase velocity d/A for the column with the rectangular cross section.

In Fig. 4(b)-(d), warping is observed around the steel bars and near the edges. This warping
function, except for around the rebars, is approximated by that obtained for homogeneous
square and rectangular cross sections (Timoshenko and Goodier, 1951, 1970). It is observed
that the inaccuracy cf the elementary theory in predicting torsional wave speed stems from
not including the effect of warping.

For retrofitted columns, Fig. 5(a)—(d) show phase velocity spectra for torsional modes.
For comparison, the phase velocity spectra of the unretrofitted RC columns in Fig. 3(b)-
(e) are also shown by dashed lines. Figure 5 shows that the phase velocity spectra of the
first torsional mode is slightly reduced by the exterior composite layer whose shear modulus
is smaller than that of concrete.
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(a) Inc: 0
Sub : 12
Time : 0.000e+00
Freq : 1.3038+00

-1.785e-02

-3.567e-02

-5.350e-02

+7.132e-02

X3
X2

-8.914e-02

Displacement us

Fig. 4(a). The first torsional mode shape for the column with the circular cross section.

(b) e : @
Sub : 12
Time : 0.0000+00
Freq : 1.2036+00

9.5620-02
7.650e-02

L] 5.738e-02

d 1.9140-02
2.455e-05
<1.908e-02

-3.821e-02

+5.733e-02

-7.645e-02

X3

9.5576-02 X2

Displacement u3

Fig. 4(b). The first torsional mode shape for the column with the octagonal cross section.

For retrofitted columns, Fig. 6(a)-(d) show the first torsional mode shapes at
d/A = 0.637 for the circular, octagonal, square, and rectangular cross sections, respectively.
These mode shapes show warping similar to that observed in Fig. 4(a)—(d). It is observed
that the elementary torsion theory, (B3) and (B6), fails to simulate the torsional response
of retrofitted columns even at the long wavelength limit, d/A — 0.
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€) [ime: o
Sub: 12
Time : 0.000€+00
Freq : 11912400

3.033e-01
2427001
1.820e-01
1.213e-01
B c067e-02
0.0008400
£.067¢.02

-1.213e-01

-1.820e-01

2.4270-01
X3

-3.033e-01 X2

Displacement uy

Fig. 4(c). The first torsional mode shape for the column with the square cross section.

(d) inc: O
Sub: 1
Time : 0.000€+00
Freq: 1.138e+00

1.878¢-01

0.000e+03

-3.7580-0:

-7.515e-022

-1.127e-01

-1.503e-0'1

-1.879e-01

Displacement us }

Fig. 4(d). The first torsional mode shape for the column with the rectangular cross section.

The above numerical results illustrate the need for improving the elementary torsion
theory to accurately predict torsional wave speed at the long wavelength limit.

TORSIONAL RIGIDITY AND WAVE SPEED

In order to accurately predict torsional wave speed at the long wavelength limit by
utilizing the elementary theory, the torsional rigidity has to be computed with the incor-
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Fig. 5(a). Phase velocity vs d/A for the retrofitted column with the circular cross section.
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d/A
Fig. 5(b). Phase velocity vs d/A for the retrofitted column with the octagonal cross section.

poration of warping. To this end, Saint-Venat’s semi-inverse analysis (Saint-Venant, 1856
Love, 1944) was conducted. In order to solve the boundary value problem defined on
cross sections, a finite element method is utilized to obtain warping and torsional rigidity
(Herrmann, 1965 ; Mason and Herrmann, 1968). In what follows, a semi-inverse torsional
analysis is formulated for retrofitted RC columns by incorporating the heterogeneity and
anisotropy for monoclinic composite layers, (Ad).

Let the angle of twist per unit axial length of a cross section be denoted by v,
(=constant). Saint-Venant had assumed that as the column twisted the cross sections
rotated as a rigid body in the x,, x,-plane and warp in the x;-direction. The column of
length L is fixed at x; = 0. The displacement field takes the form:
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Fig. 5(c). Phase velocity vs d/A for the retrofitted column with the square cross section.

(d)

Cp/Cs

0.6 ——s
0.0 0.2 0.4 0.6 0.8 1.0 1.2

d/A
Fig. 5(d). Phasz velocity vs d/A for the retrofitted column with the rectangular cross section.

ul(xl’x27-x3) = —(Y1x3)X2,
Uy (X1, X2, X3) = (Y3x3)x,,

us(xy, X2, X3) = Yaw(x,, X,),

(25)

where w(x, x,) is the warping function.
A three-dimensional elastostatic boundary-value problem is defined by (3)—(5) for

static problems (o = 0). The boundary conditions for the RC columns are (6)—(8) on each
cross section, x; = constant, and the end conditions are:
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(a) inc: o
Sub : 12
Time : 0.0000+00
Freq: 12676400

-5.008e-02

-6.6760-02

X3

Displacement u3

Fig. 6(a). The first torsional mode shape for the retrofitted column with the circular cross section.

b) [me: o

Sub: 12
Time : 0.000e+00
Freq: 12760400

9.780e-02
7833602
5475002
3917602

1.9500-02

1.3200-05
-1,956e-02

-3.9148-02

5.8720-02
763002
X3

2.788e-02 X2

Displacement u3

Fig. 6(b). The first torsional mode shape for the retrofitted column with the octagonal cross section.

W =uP =6 =0 atx, =0, (26)
u(f‘) = —(Y3L)x,, us’ = (s L)xy, U(313) =0 atx;=L. 27

The displacement boundary conditions, (26) and (27), render an exact elasticity solution
for a three-dimensional problem and suppress the boundary layer formation investigated
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Sub : 12

Time : 0.000e+00

Freq : 1.180e+00

3.224¢-01
2.579¢-01
{ 1.9350-01
1.290a-01
e 6.4490-02
1.000e-06
6.4482-02
-1.290e-01

-1.9356-01
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3224001 X2
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Fig. 6(c). The first torsional mode shape for the retrofitted column with the square cross section.

(d) [me: o _}
Sub : 1

Time : 0,0002+00

Freq : 1.129¢+00

2.023e-01
1.619e-01

1.214e-01

0.000e+00
-4.046e-02
-8.093e-02
~t.214e-M
~1.619e-11

-2.023e-01

Displacement us

Fig. 6(d). The first torsional mode shape for the retrofitted column with the rectangular cross section.

by Toupin (1965), Knowles (1966), Horgan (1972), Choi and Horgan (1977), and Dong
and Goetschel (1982) (see also a review article by Muki and Dong, 1993).

The displacement field (25) yields vanishing strains and stresses except &,3, &, 0»3, and
63 In order to define the boundary value problem over the cross section for the warping
function, shear strains and stresses per unit angle of twist per axial length are introduced :
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26,5 2631 0y 0'3|](2)='//3'[2€23 2es; Ty T31](30- (28)

Equations (3) and (4) with (5), (25), and (28) yield

™ +15, =0 inQ®, (29)
(= ) (D 4,
{T“} - [C““ C‘”] {“‘2 H‘} inQ®, (30)
Ta1 Cys  Css wf‘i‘)—xz
where
CH=C8=G%, CP=0 forau=1,2. 31

By substituting (30) into (29), the equilibrium equation for the warping function becomes
CEW+2CEWH+CEWS: =0 inQ®. (32)

The relevant boundary conditions consist of the continuity of the warping function and the
traction in the x;-direction on each interface between the steel bar and concrete, 6" :

w =@ P ORD = DY ondQ, m=0,1,...,N. (33)

For retrofitted columns, the continuity conditions are also prescribed on the interface
between the concrete and composite layer, Q% :

w? = w DD = DnPon QY ifQY % & (34a,b)
The traction free condition on the exterior composite surface, 0Q8 becomes:
2P =0 ondQf ifQP # &, (34c)
For unretrofitted columns, the traction free condition holds on the boundary, Q¢ :
@ =0 ondQP ifQY = . (35)

Since the exterior boundary conditions, (34¢) or (35), are a Neumann-type, w is determined
up to an additive constant. In order to have a well-posed boundary value problem, the
warping function is specified at the origin as:

W’(z) — 0 at_xl = X, = 0 (36)

The minimum potential energy theorem furnishes a weak formulation of the problem
(Herrmann, 1965):

3 1 C C,.® wf“)+x
5[2”5[»v9’+x1 WFT’-xz]X[ - } { ‘}dxldxz}o. (37)
a=1

C45 C5 5 W’_(i() —Xa

o

The torsional rigidity is computed as
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3
(GI3)(e) = Z Jj(xlf(zas) ”-’Czr(ﬁ)) dx; dx;. (38)

o=

Q@

By utilizing the same mesh employed for the waveguide analyses, the warping function
and torsional rigidity were computed using a finite element method (Herrmann, 1965).

It is noted that the boundary value problem defined by (29)-(36) has a unique solution.
The existence and uniqueness of the solution can be proven by using the Lax-Milgram
theorem for a coercive bilinear form derived from (37) after establishing the equivalence
between the classical formulation (29)-(36) and the variational formulation (37) (see for
example, Oden and Reddy, 1976 ; Brezzi and Gilard, 1987).

Tables 3 and 4, for RC columns before and after retrofitting, compare both the
torsional rigidities and wave speed computed from the semi-inverse method, (GLs),,, and
Cpey» With those frora the elementary theory, (GF),, and C,,. The torsional rigidity and
wave speed were nondimensionalized by those of the monolithic concrete column with
diameter d. Both tables show that the torsional rigidity obtained by the semi-inverse analysis
with mass moment of inertia J; in (B4) accurately predicts the torsional wave speed, (B10),
at the long wavelength limit. The errors in torsional rigidity predicted by the elementary
theory are approximately 20% for both the circular and octagonal cross sections, 40% for
the square cross section, and 70% for the rectangular cross section. The error increases
with increasing warping, see Figs 4 and 6.

Due to the warping induced by reinforcing bars, the torsional rigidity predicted by the
elementary theory is extremely inaccurate even for beams with circular cross sections.
Therefore, it is necessary to compute the torsional rigidity according to (38) based upon
the semi-inverse analysis in order to predict the dynamic torsional response of retrofitted
RC columns.

The above observation was also confirmed by the analytical and experimental inves-
tigation conducted by Kuo and Conway (1973) for an epoxy cylinder with circular cross
section reinforced by four brass bars. Kuo and Conway did not compare their results with
the elementary theory. The elementary theory predicts the nondimensional ridigity of 4.98
for the composite beam. Kuo and Conway obtained the nondimensional torsional rigidity
1.57 analytically and 1.53 experimentally. The present FE analysis predicted 1.77. (This
value was obtained from a coarse mesh of density similar to the mesh in Fig. 2 as well as a
mesh four times finer than the coarse one.) Even though there is a slight difference between
the analytical solution and the FE solution, the above observation is confirmed. it is noted

Table 3. Comparisons of nondimensional torsional rigidities and wave speed for the RC columns

(G13)pm (GL), Js Crim Coey

GPr/d* |32 G®nd*|32 pPnd*/32 c® co

Circle 1.28 1.06 1.09 1.08 0.99
Octagon 1.28 1.04 1.09 1.08 0.98
Square 1.34 0.93 1.14 1.09 0.91
Rectangle 1.48 0.86 1.24 1.09 0.84

Table 4. Comparisons of nondimensional torsional rigidities and wave speed for the retrofitted RC columns

(613)0") (GIB)(F) J3 Cp(m) Cp(ﬂ)

G@nd* /32 G rd*/32 pPnd* 32 cP® c@®

Circle 1.36 1.14 1.22 1.05 0.97
Octagon 1.37 1.14 1.23 1.06 0.96
Square 1.50 1.07 1.36 1.05 0.89

Rectangle 1.59 0.95 1.41 1.06 0.82
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that Kuo and Conway’s solution was obtained by truncating a stress function expressed in
a double infinite series. An analytical and experimental investigation on torsional rigidity
of RC columns with circular cross sections will be deferred to a subsequent publication.

CONCLUSIONS

In order to investigate the changes in torsional wave velocities of RC columns due to
composite retrofitting, waveguide analyses were conducted for RC columns with circular,
octagonal, square, and rectangular cross sections of equal area. Comparisons of the phase
velocity spectra between the columns with and without exterior composite layers show that
the retrofitted columns have slightly smaller phase velocity of the first torsional mode. The
first mode shapes exhibit marked warping induced by vertical bars.

Comparisons of the phase velocity of the first torsional mode with those predicted by
elementary theories indicate that the elementary theory does not accurately predict the
torsional wave speed even at the long wavelength limit. However, the elementary theory
can predict torsional wave speed if the torsional rigidity was computed by utilizing Saint-
Venant’s semi-inverse method for torsional warping.
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APPENDIX A: BASIC EQUATIONS FOR THE FE IMPLEMENTATION

A typical finite element region I'* is defined by a coordinate map from the standard square region in the £,
n-plane, || € 1, |g| < 1. The corner points are identified by nodes, 1-4 in the counterclockwise direction. These
nodal coordinates in the standard region are, beginning from node 1, (—1, —1), (1, =1), (1,1), (= 1,1). For
notational simplicity, node numbers are denoted by hatted integers, / = 1-4. The shape functions, employed for
both coordinate and displacement mappings, are defined as:

Ny =1+ & +nm), (A}
where
&), i=1-4,

are the above nodal coordinates.
The interpolation matrix {N] and nodal displacement vector are defined as:

d

Nooo ot
4
@ =N{T=Y 0 N 0| h, (A2)
=1
0 0 N; 0'1]
where (7‘, is the jth displacement component at node 7.
The strain—displacement matrix is defined as:
N, 0 0 7
0 Ni» 0 —
Ui
4 0 0  —1kN; )
& =[BU} = 0. (A3)
{} [ ]{ } i; 0 \/——U(N; Ni,z 2
i
 — 1kN; 0 N, :
L N Ni (UN

The composite layer is cylindrically orthotropic with one of the material axes aligned in the x,-direction.
Therefore, with respect to the x,, x,, x;-coordinate system, the composite layer is characterized as a monoclinic
material with a single plane of symmetry, x, = constant (Lekhnitskii, 1963).

The elastic modulus matrix for monoclinic materials becomes :

_C‘Il C12 Cl3 0 0 Clﬁ—‘ @
Cvl 2 CZZ (‘2 3 0 0 C26
[D](“) _ (']3 CZJ C}S 0 0 C36 , (A4)
0 0 0 Cu Cu 0O
0 0 0 C4 Cs5 0

\_Cm Cis Cis 0 Y CceJ

where for isotropic steel (o = 1) and concrete (x = 2) the above moduli are expressed in terms of Young’s modulus
and Poisson’s ratio :

. E(l1-v) ? vE ]
o _rx o (£ R ) R () R e —
Cil=CH =0 = {(14{-1‘)(1—2»‘)} , CF (8¢ CH (1+v)(1—2v) B

E (a)
ca-cn-ca={fol en-ca-ca-cg=o a1 (a3)
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APPENDIX B: ELEMENTARY RC TORSION EQUATIONS

Let the angle of twist of a cross section be denoted by W;(x;, w). Assuming that cross sections remain plane
during deformation, i.e., no warping, the displacement field in the beam (column) is approximated as:

u (X0, X2, X3,0) & =W (x5, 0) X004 (X1, Xp, X3, 0) & Wi (x5, @)%, u3(x), Xy, x5, 0) 2 0. (BI)

The torque is defined in terms of the stresses as:
M; = ﬁ[(x,a32 —Xa03,)dx, dx,. (B2)

Q

The elementary torsion equation in the frequency domain becomes

M+t ¥, = 0. (B3)
Where J; is the polar mass moment of inertia:
I = ﬁ[p(xf +x3)dx, dx,. (B4)
Q

It is noted that for harmonic wave ( free vibration) analyses, external couples are absent.
In the elementary theory, a torsional stress state, 63, % 0 and o3, # 0, is assumed. The resulting Hooke’s law
becomes

o = 05 = 0¥} = o = 0,03 = CLUWEL +ufh) + CHEE +ul%),  of = CEuE% +u82) + CHE +uf),
(BS)
where C,; is the compact notation of the elastic modulus tensor, as defined in (A4) of Appendix A.
By computing (B5) with the strains computed from (B1) and substituting this into (B2), a constitutive relation
is obtained as:

M, = (GI3)(m)‘P3.3s (B6)

where the torsional rigidity of the beam is defined as:

(GL)m = [j(c44vxf +Cssx3) dx, dx,. (B7)
q

In evaluating the above integration over the cross section, both the steel and composite sub-regions must be
properly accounted for. In the above, it is assumed that

JJC45x,x2 dx, dx, =0,
Q

which holds for the cross sections with double axes of symmetry.

The torsion equations consist of the equations of motion, (B3), and the constitutive equation (B6). The
equation of motion for torsion is rewritten in terms of the angle of twist by substituting (B6) into (B3). Next the
harmonic wave form in the x;-direction is assumed :

¥, = ¥, exp(y/— lkx,). (B8)

The substitution (B8) into the equation of motion for the angle of twist furnishes

{—kGL) gy + T 02} ¥, = 0, (B9)
For torsional motion,
¢ = [Chu (B10)
Js

For torsional wave motion, the elementary theory predicts a nondispersive phase velocity spectrum.



